Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.904
Filtrar
1.
Zoolog Sci ; 41(1): 14-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587513

RESUMO

The Japanese spiny lobster Panulirus japonicus lives on rocky shores and is mainly distributed along the Pacific coast around Japan. Due to the high demand for it, the development of aquaculture systems and increasing its resource volume requires further expansive production. However, a major factor preventing the establishment of aquaculture technology for this lobster is the difficulty with rearing processes from larval to juvenile production. A recent study shed light on the molecular mechanisms underlying larval development from the perspective of physiological functions of endocrine factors such as molting hormones. However, physiological studies of P. japonicus are still lacking. In decapod crustaceans, the X-organ/sinus gland complex is a well-known endocrine system that secretes the crustacean hyperglycemic hormone (CHH)-superfamily peptides that regulate growth, molting, sexual maturation, reproduction, and change in body color. In this study, we identified two CHHs from the sinus glands of P. japonicus using reversed-phase high-performance liquid chromatography in order to elucidate their physiological function for the first time.


Assuntos
Proteínas de Artrópodes , Decápodes , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Palinuridae , Animais , Japão
2.
Pest Manag Sci ; 80(2): 388-396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37708392

RESUMO

BACKGROUND: Bursicon is a heterodimeric neuropeptide that is involved in many physiological activities such as cuticle tanning, wing expansion, reproduction and immunity in insects. In this study, the role of bursicon in the wing expansion was investigated in Bactrocera dorsalis, an important invasive insect pest in agriculture. RESULTS: The cDNA sequences and deduced amino acids of bursicon genes (named BdBurs-α and BdBurs-ß) were determined, and two proteins typically contained 11 cysteine residues in conserved positions that were highly conserved in other insect species. The spatiotemporal expressions of bursicon genes showed that higher expression occurred at the pupal, early adult stage and ovaries, and lower expression at the late larval stage and in wing tissue (8-day-old pupae). Dysfunction of bursicon genes by dsRNA microinjection into 5-day-old pupae reduced PKA (a downstream component of the bursicon pathway) activity and resulted in malformed adult wings. PKA inhibitor injection into 5-day-old pupae also resulted in similar phenotypes. Hematoxylin & eosin staining of the adult wing showed that RNAi and PKA inhibitor treatment reduced the thickness of the wing cuticle, which wing cuticle thickness were ≈50% thinner than in the control. Furthermore, the expression of hedgehog (Bdhh) (one of 10 tested genes related to wing development) was significantly upregulated after RNAi and PKA inhibitor application. CONCLUSION: The results indicate that bursicon plays a crucial role in the wing expansion of B. dorsalis, suggesting bursicon genes have potential to be the targets for B. dorsalis control. © 2023 Society of Chemical Industry.


Assuntos
Proteínas Hedgehog , Hormônios de Invertebrado , Tephritidae , Animais , Tephritidae/genética , Metamorfose Biológica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38122925

RESUMO

Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.


Assuntos
Braquiúros , Hormônios de Invertebrado , Humanos , Animais , Braquiúros/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Proteínas de Transporte/metabolismo , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1277439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854192

RESUMO

Bursicon, a neuropeptide hormone comprising two subunits-bursicon (burs) and partner of burs (pburs), belongs to the cystine-knot protein family. Bursicon heterodimers and homodimers bind to the lucine-rich G-protein coupled receptor (LGR) encoded by rickets to regulate multiple physiological processes in arthropods. Notably, these processes encompass the regulation of female reproduction, a recent revelation in Tribolium castaneum. In this study we investigated the role of burs/pburs/rickets in mediating female vitellogenesis and reproduction in a hemipteran insect, the whitefly, Bemisia tabaci. Our investigation unveiled a synchronized expression of burs, pburs and rickets, with their transcripts persisting detectable in the days following eclosion. RNAi-mediated knockdown of burs, pburs or rickets significantly suppressed the transcript levels of vitellogenin (Vg) and Vg receptor in the female whiteflies. These effects also impaired ovarian maturation and female fecundity, as evidenced by a reduction in the number of eggs laid per female, a decrease in egg size and a decline in egg hatching rate. Furthermore, knockdown of burs, pburs or rickets led to diminished juvenile hormone (JH) titers and reduced transcript level of Kruppel homolog-1. However, this impact did not extend to genes in the insulin pathway or target of rapamycin pathway, deviating from the results observed in T. castaneum. Taken together, we conclude that burs/pburs/rickets regulates the vitellogenesis and reproduction in the whiteflies by coordinating with the JH signaling pathway.


Assuntos
Hemípteros , Hormônios de Invertebrado , Neuropeptídeos , Raquitismo , Animais , Feminino , Hemípteros/genética , Hemípteros/metabolismo , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Hormônios Juvenis , Vitelogênese
5.
J Comp Physiol B ; 193(5): 509-522, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563322

RESUMO

Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.


Assuntos
Braquiúros , Hormônios de Invertebrado , Animais , Braquiúros/fisiologia , Octopamina , Amônia , Proteínas de Artrópodes
6.
Gen Comp Endocrinol ; 334: 114226, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731602

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin, consisting of A- and B-chain. Recently, an RGP ortholog (Asc-RGP) from Astropecten scoparius in the order Paxillosida was found to harbor an amidation signal (Gly-Arg) at the C-terminus of the B-chain (Mita et al., 2020a). Two cleavage sites were also predicted within the signal peptide of the Asc-RGP precursor. Thus, four kinds of analogs (Asc-RGP-NH2(S), Asc-RGP-GR(S), Asc-RGP- NH2(L), Asc-RGP-GR(L) were hypothesized as natural Asc-RGPs. To identify the natural Asc-RGP, an extract of radial nerve cords from A. scoparius was analyzed using reverse-phase high-performance liquid chromatography and MALDI-TOF-mass spectrometry. The molecular weight of Asc-RGP was 4585.3, and those of A- and B-chains were 2511.8 and 2079.8, respectively. This strongly suggests that natural RGP in A. scoparius is Asc-RGP-NH2(S). Asc-RGP-NH2(S) stimulated 1-methyladenine and cyclic AMP production in isolated ovarian follicle cells of A. scoparius. On the other hand, the concentrations of four synthetic Asc-RGP analogs required for the induction of spawning in 50% of ovarian fragments were almost the same. The size and C-terminal amidation of the B-chain might not be important for spawning-inducing activity. C-terminally amidated RGPs in the B-chain were also observed in other species of starfish belonging to the order Paxillosida, particularly the family Astropectinidae, but not the family Luidiidae.


Assuntos
Hormônios de Invertebrado , Relaxina , Animais , Feminino , Gônadas , Relaxina/química , Estrelas-do-Mar/fisiologia
7.
Gen Comp Endocrinol ; 330: 114128, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152768

RESUMO

Eyestalk-derived neuropeptides, primarily the crustacean hyperglycemic hormone (CHH) neuropeptide family, regulate vitellogenesis in decapod crustaceans. The red deep-sea crab, Chaceon quinquedens, a cold-water species inhabiting depths between 200 and 1800 m, has supported a small fishery, mainly harvesting adult males in the eastern US for over 40 years. This study aimed to understand the role of eyestalk-neuropeptides in vitellogenesis in C. quinquedens with an extended intermolt stage. Chromatography shows two CHH and one MIH peak in the sinus gland, with a CHH2 peak area four times larger than CHH1. The cDNA sequence of MIH and CHH of C. quinquedens is isolated from the eyestalk ganglia, and the qPCR assay shows MIH is significantly higher only at ovarian stages 3 than 4 and 5. However, MIH transcript and its neuropeptides do differ between stages 1 and 3. While CHH transcripts remain constant, its neuropeptide levels are higher at stages 3 than 1. Additionally, transcriptomic analysis of the de novo eyestalk ganglia assembly at ovarian stages 1 and 3 found 28 eyestalk neuropeptides. A GIH/VIH or GSH/VSH belonging to the CHH family is absent in the transcriptome. Transcripts per million (TPM) values of ten neuropeptides increase by 1.3 to 2.0-fold at stage 3 compared to stage 1: twofold for Bursicon α, followed by CHH, AKH/corazonin-like, Pyrokinin, CCAP, Glycoprotein B, PDH1, and IDLSRF-like peptide, and 1.3-fold of allatostatin A and short NP-F. WXXXRamide, the only downregulated neuropeptide, decreases TPM by âˆ¼ 2-fold at stage 3, compared to stage 1. Interestingly, neuroparsin with the highest TPM values remains the same in stages 1 and 3. The mandibular organ-inhibiting hormone is not found in de novo assembly. We report that CHH, MIH, and eight other neuropeptides may play a role in vitellogenesis in this species.


Assuntos
Braquiúros , Hormônios de Invertebrado , Neuropeptídeos , Animais , Masculino , Feminino , Braquiúros/genética , Hormônios de Invertebrado/genética , Proteínas de Artrópodes/genética , Neuropeptídeos/genética , Neuropeptídeos/química , Gânglios , DNA Complementar , Transcriptoma
8.
Front Endocrinol (Lausanne) ; 14: 1322800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298185

RESUMO

Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR). The YO of the blackback land crab, Gecarcinus lateralis, expresses 49 Class A GPCRs, three of which (Gl-CHHR-A9, -A10, and -A12) were provisionally assigned as CHH-like receptors. CrusTome, a transcriptome database assembled from 189 crustaceans and 12 ecdysozoan outgroups, was used to deorphanize candidate MIH/CHH GPCRs, relying on sequence homology to three functionally characterized ITP receptors (BNGR-A2, BNGR-A24, and BNGR-A34) in the silk moth, Bombyx mori. Phylogenetic analysis and multiple sequence alignments across major taxonomic groups revealed extensive expansion and diversification of crustacean A2, A24, and A34 receptors, designated CHH Family Receptor Candidates (CFRCs). The A2 clade was divided into three subclades; A24 clade was divided into five subclades; and A34 was divided into six subclades. The subclades were distinguished by conserved motifs in extracellular loop (ECL) 2 and ECL3 in the ligand-binding region. Eleven of the 14 subclades occurred in decapod crustaceans. In G. lateralis, seven CFRC sequences, designated Gl-CFRC-A2α1, -A24α, -A24ß1, -A24ß2, -A34α2, -A34ß1, and -A34ß2, were identified; the three A34 sequences corresponded to Gl-GPCR-A12, -A9, and A10, respectively. ECL2 in all the CFRC sequences had a two-stranded ß-sheet structure similar to human Class A GPCRs, whereas the ECL2 of decapod CFRC-A34ß1/ß2 had an additional two-stranded ß-sheet. We hypothesize that this second ß-sheet on ECL2 plays a role in MIH/CHH binding and activation, which will be investigated further with functional assays.


Assuntos
Proteínas de Artrópodes , Benzenoacetamidas , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Piperidonas , Receptores Acoplados a Proteínas G , Humanos , Filogenia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química
9.
J Insect Physiol ; 139: 104398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35537524

RESUMO

Bursicon is a heterodimeric neuropeptide composed of Burs-α and Burs-ß subunits that plays an important role in cuticle tanning and wing expansion in insects. In this study, full-length cDNAs of Burs-α (LdBurs-α) and Burs-ß (LdBurs-ß) genes were identified in gypsy moth (Lymantria dispar) and cloned. The 480 bp and 420 bp open reading frames (ORFs) encode 159 and 129 amino acid polypeptides, respectively. LdBurs-α and LdBurs-ß have 11 conserved cysteine residues, and LdBurs-α and LdBurs-ß genes were expressed during all developmental stages according to quantitative reverse transcription PCR (qRT-PCR), with highest expression in the egg stage. High expression levels were also detected in the haemolymph, cuticle and head. To explore the physiological functions of LdBurs-α and LdBurs-ß, the genes were knocked down in larvae and pupae using RNA interference (RNAi), and expression levels of LdBurs-α and LdBurs-ß were decreased by 42.26-80.09%. Wing defects were observed in L. dispar pupae following Ldbursion silencing, with a phenotypic percentage ranging from 10.17% to 15.00%. RNAi-mediated knockdown of Ldbursicon prevented the expansion of male and female L. dispar adult wings, with malformation rates ranging from 6.38% and 30.00% to 57.69% and 69.23%, but no cuticle tanning defects were observed in pupae or adults. The results indicate that bursicon plays a key role in wing expansion in L. dispar adults, making it a potentially novel molecular target for insecticide-based control of this pest species.


Assuntos
Hormônios de Invertebrado , Mariposas , Animais , Feminino , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Masculino , Metamorfose Biológica/genética , Mariposas/genética , Mariposas/metabolismo , Pupa/genética , Pupa/metabolismo , Interferência de RNA
10.
Pest Manag Sci ; 78(4): 1492-1499, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34962063

RESUMO

BACKGROUND: Insect G protein-coupled receptors (GPCRs) have been identified as a new generation of attractive targets for RNA interference (RNAi)-based pest control. A functional study of the leucine-rich repeat-containing (LGR2) gene in Hyphantria cunea (HLGR2) was performed to examine whether it can be used in the molecular control of this notorious pest. RESULTS: The complementary DNA (cDNA) sequence and deduced amino acids of HLGR2 were obtained and analyzed in the present study. HLGR2 is a typical GPCR and shows high structural and sequence similarity with other insect LGR2 proteins. The spatiotemporal expression profiles of HLGR2 showed that HLGR2 was highly expressed at the egg stage and tissues of head and silk gland. After RNAi of HLGR2, distinct phenotypes were observed when HLGR2 expression was suppressed, indicating that HLGR2 is essential in pupation and eclosion. HLGR2 RNAi led to a low pupation rate (45.00%), body malformation, abnormal wing expansion, failed cuticle melanization (63.33%), and high mortality rate (48.33%). Furthermore, we identified eight genes that are regulated by HLGR2. The expression of these eight genes was induced by the HLGR2 signaling pathway and correlated well with cuticle sclerotization. Unlike LGR2 in other insect species, HLGR2 was found to play a crucial role in the control of H. cunea during ecdysis and postecdysial stages. CONCLUSION: HLGR2 is essential for the growth and development and wing expansion and maturation in H. cunea, suggesting HLGR2 is a promising candidate for application in RNAi-based control of this notorious agriculture-forest pest. © 2021 Society of Chemical Industry.


Assuntos
Hormônios de Invertebrado , Mariposas , Animais , Hormônios de Invertebrado/química , Metamorfose Biológica , Mariposas/genética , Interferência de RNA
11.
Br J Nutr ; 127(6): 823-836, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33988091

RESUMO

To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycaemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3-6 h, decreased significantly during 12-48 h and recovered to the control groups' level at 72 h. After CHH knock-down, dopamine (DA) contents reduced significantly during 3-24 h, which recovered after 48 h. Besides, the expressions of guanylyl cyclase (GC) and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cyclic AMP (cAMP), cyclic GMP (cGMP) and diacylglycerol (DAG) and the expressions of protein kinase A (PKA), protein kinase G (PKG), AMP active protein kinase α (AMPKα) and AMPKγ were significantly down-regulated, while the levels of protein kinase C (PKC) and AMPKß were significantly up-regulated. The expressions of cyclic AMP response element-binding protein (CREB) and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes hexokinase, pyruvate kinase and phosphofructokinase in glycolysis (GLY), rate-limiting enzymes citrate synthase in tricarboxylic acid and critical enzymes phosphoenolpyruvate carboxykinase, fructose diphosphate and glucose-6-phosphatase in gluconeogenesis (GNG) were significantly decreased in hepatopancreas. These results suggest that CHH affects DA and then they affect their receptors to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on the cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKß-CREB pathways, thereby regulating GLUT, inhibiting glycogen metabolism and promoting GLY and GNG. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.


Assuntos
Hiperglicemia , Penaeidae , Amônia , Animais , Proteínas de Artrópodes , Glucose/metabolismo , Glicogênio/metabolismo , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Nitrogênio/metabolismo , Interferência de RNA
12.
Front Endocrinol (Lausanne) ; 12: 760538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867802

RESUMO

In this study, a novel Crustacean Hyperglycemic Hormone-type II gene (CHH-type II) was identified and biologically characterized in a shrimp, Penaeus monodon. Based on its structure and function, this gene was named P. monodon vitellogenesis-inhibiting hormone (PemVIH). The complete cDNA sequence of PemVIH consisted of 1,022 nt with an open reading frame (ORF) of 339 nt encoding a polypeptide of 112 amino acids. It was classified as a member of the CHH-type II family based on conserved cysteine residues, a characteristically positioned glycine residue, and the absence of CHH precursor-related peptide (CPRP) domain. The deduced mature PemVIH shared the highest sequence similarities with giant river prawn sinus gland peptide A. Unlike P. monodon gonad-inhibiting hormone (PemGIH), PemVIH was expressed only in the brain and ventral nerve cord, but not the eyestalks. Whole mount immunofluorescence using a newly generated PemVIH antiserum detected positive signals in neuronal cluster 9/11 and 17 of the brain, commissural ganglion (CoG), and neuronal clusters of ventral nerve cord. The presence of PemVIH-positive neurons in CoG, a part of stomatogastric nervous system, suggested a potential mechanism for crosstalk between nutritional and reproductive signaling. The role of PemVIH in vitellogenesis was evaluated using RNA interference technique. Temporal knockdown of PemVIH in female subadults resulted in a 3-fold increase in ovarian vitellogenin expression, suggesting an inhibitory role of PemVIH in vitellogenesis. This study provided novel insight into the control of vitellogenesis and additional strategies for improving ovarian maturation in P. monodon without the current harmful practice of eyestalk ablation.


Assuntos
Hormônios de Invertebrado/metabolismo , Ovário/metabolismo , Penaeidae/metabolismo , Vitelogênese/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Clonagem Molecular/métodos , Feminino , Proteínas do Tecido Nervoso/metabolismo , Vitelogeninas/metabolismo
13.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681803

RESUMO

A neuropeptide (Sco-CHH-L), belonging to the crustacean hyperglycemic hormone (CHH) superfamily and preferentially expressed in the pericardial organs (POs) of the mud crab Scylla olivacea, was functionally and structurally studied. Its expression levels were significantly higher than the alternative splice form (Sco-CHH) in the POs, and increased significantly after the animals were subjected to a hypo-osmotic stress. Sco-CHH-L, but not Sco-CHH, significantly stimulated in vitro the Na+, K+-ATPase activity in the posterior (6th) gills. Furthermore, the solution structure of Sco-CHH-L was resolved using nuclear magnetic resonance spectroscopy, revealing that it has an N-terminal tail, three α-helices (α2, Gly9-Asn28; α3, His34-Gly38; and α5, Glu62-Arg72), and a π-helix (π4, Cys43-Tyr54), and is structurally constrained by a pattern of disulfide bonds (Cys7-Cys43, Cys23-Cys39, and Cys26-Cys52), which is characteristic of the CHH superfamily-peptides. Sco-CHH-L is topologically most similar to the molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus with a backbone root-mean-square-deviation of 3.12 Å. Ten residues of Sco-CHH-L were chosen for alanine-substitution, and the resulting mutants were functionally tested using the gill Na+, K+-ATPase activity assay, showing that the functionally important residues (I2, F3, E45, D69, I71, and G73) are located at either end of the sequence, which are sterically close to each other and presumably constitute the receptor binding sites. Sco-CHH-L was compared with other members of the superfamily, revealing a folding pattern, which is suggested to be common for the crustacean members of the superfamily, with the properties of the residues constituting the presumed receptor binding sites being the major factors dictating the ligand-receptor binding specificity.


Assuntos
Proteínas de Artrópodes , Braquiúros , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Neuropeptídeos , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Hormônios de Invertebrado/química , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Modelos Moleculares , Família Multigênica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pericárdio/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
14.
J Therm Biol ; 100: 103076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503813

RESUMO

Hyperglycemia is a stress responsible mechanism induced in crustaceans through the secretion of Crustacean Hyperglycemic Hormone (CHH). The effect of thermal shock on the hemolymph CHH levels was studied in P. pelagicus. Crabs were exposed to varying temperatures for 3 h and were then transferred to ambient temperature (28 °C). A higher CHH level of 47.30 ± 2.26 fmol/ml was observed on exposure of crabs to 24 °C, over a recovery period of 3 h. This was reflected with increase in hemolymph glucose causing hyperglycemia and subsequent decrease in hepatopancreas glycogen levels. The results suggest the modulatory role of CHH in producing the energy required for the physiological reparation faced by the crabs during thermal stress.


Assuntos
Braquiúros/metabolismo , Glucose/metabolismo , Resposta ao Choque Térmico , Animais , Proteínas de Artrópodes/metabolismo , Braquiúros/fisiologia , Glicogênio/metabolismo , Hemolinfa/metabolismo , Hepatopâncreas/metabolismo , Hormônios de Invertebrado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regulação para Cima
15.
PLoS One ; 16(9): e0256735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478479

RESUMO

The crustacean molting process is regulated by an interplay of hormones produced by the eyestalk ganglia and Y-organs (YO). Molt-inhibiting hormone and crustacean hyperglycemic hormone released by the sinus gland of the eyestalk ganglia (EG) inhibit the synthesis and secretion of ecdysteroid by the YO, hence regulating hemolymph levels during the molt cycle. The purpose of this study is to investigate the ecdysteroidogenesis pathway, specifically genes linked to changes in ecdysteroid levels occurring at early premolt (ePM). To this end, a reference transcriptome based on YO, EG, and hepatopancreas was de novo assembled. Two genes (cholesterol 7-desaturase Neverland and cytochrome p450 307a1-like Spook) involved in ecdysteroidogenesis were identified from the YO transcriptome using sequence comparisons and transcript abundance. Two other candidates, Hormone receptor 4 and probable cytochrome p450 49a1 potentially involved in ecdysteroidogenesis were also identified. Since cholesterol is the ecdysteroid precursor, a putative cholesterol carrier (Apolipoprotein D-like) was also examined to understand if cholesterol uptake coincided with the increase in the ecdysteroid levels at the ePM stage. The expression level changes of the five candidate genes in the YO were compared between intermolt (IM) and induced ePM (iePM) stages using transcriptomic analysis. Expression analysis using qPCR were carried out at IM, iePM, and normal ePM. The increase in Spook and Neverland expression in the YO at the ePM was accompanied by a concomitant rise in ecdysteroid levels. The data obtained from iePM stage were congruent with those obtained from the normal ePM stage of intact control animals. The present findings support the role of Halloween genes in the ecdysteroidogenesis and molt cycle in the blue crab, Callinectes sapidus.


Assuntos
Braquiúros , Colesterol , Ecdisteroides , Regulação da Expressão Gênica no Desenvolvimento , Muda/genética , Animais , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Colesterol/genética , Colesterol/metabolismo , Ecdisteroides/genética , Ecdisteroides/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/metabolismo , Transcriptoma
16.
Gen Comp Endocrinol ; 314: 113901, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530000

RESUMO

Crustacean Y-organs secrete ecdysteroid molting hormones. Ecdysteroids are released in increased amount during premolt, circulate in hemolymph, and stimulate the events in target cells that lead to molting. During much of the molting cycle, ecdysteroid production is suppressed by molt-inhibiting hormone (MIH), a peptide neurohormone produced in the eyestalks. The suppressive effect of MIH is mediated by a cyclic nucleotide second messenger. A decrease in circulating MIH is associated with an increase in the hemolymphatic ecdysteroid titer during pre-molt. Nevertheless, it has long been hypothesized that a positive regulatory signal or stimulus is also involved in promoting ecdysteroidogenensis during premolt. Data reviewed here are consistent with the hypothesis that an intracellular Ca2+ signal provides that stimulus. Pharmacological agents that increase intracellular Ca2+ in Y-organs promote ecdysteroidogenesis, while agents that lower intracellular Ca2+ or disrupt Ca2+ signaling suppress ecdysteroidogenesis. Further, an increase in the hemolymphatic ecdysteroid titer after eyestalk ablation or during natural premolt is associated with an increase in intracellular free Ca2+ in Y-organ cells. Several lines of evidence suggest elevated intracellular calcium is linked to enhanced ecdysteroidogenesis through activation of Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, thereby lowering intracellular cyclic nucleotide second messenger levels and promoting ecdysteroidogenesis. Results of transcriptomic studies show genes involved in Ca2+ signaling are well represented in Y-organs. Several recent studies have focused on Ca2+ transport proteins in Y-organs. Complementary DNAs encoding a plasma membrane Ca2+ ATPase (PMCA) and a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) have been cloned from crab Y-organs. The relative abundance of PMCA and SERCA transcripts in Y-organs is elevated during premolt, a time when Ca2+ levels in Y-organs are likewise elevated. The results are consistent with the notion that these transport proteins act to maintain the Ca2+ gradient across the cell membrane and re-set the cell for future Ca2+ signals.


Assuntos
Braquiúros , Hormônios de Invertebrado , Animais , Braquiúros/metabolismo , Sinalização do Cálcio , Ecdisteroides/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/metabolismo , Muda/genética
17.
Mol Immunol ; 139: 50-64, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454185

RESUMO

To unveil the neuroendocrine-immune (NEI) mechanism of crustaceans under high ambient ammonia-N, crustacean hyperglycemic hormone (CHH) in L. vannamei was knocked down under 20 mg/L ammonia-N exposure. The results showed that the expression of CHH in the eyestalks decreased significantly when CHH was silenced. After CHH was knocked down, the levels of CHH, ACh, DA, NE, and 5-HT in the haemolymph decreased significantly. Correspondingly, the expressions of GC, ACh7R, DM1, DA1R, and 5-HT7R in haemocytes down-regulated significantly, while DA4R and α2AR up-regulated significantly. Besides, the expression of Toll3 reduced significantly. And significantly changes occurred in the levels of G protein effectors (AC and PLC), second messengers (cAMP, cGMP, CaM, and DAG), protein kinases (PKA, PKC and PKG), and nuclear transcription factors (CREB, Dorsal, Relish and NKRF). Furthermore, immune defense proteins (BGBP and PPO3, Crustin A, ALF, LYC, TNFα, and IL-16), phagocytosis-related proteins (Cubilin, Integrin, Peroxinectin, Mas-like protein, and Dynamin-1) and exocytosis-related proteins (SNAP-25, VAMP-2 and Syntaxin) changed significantly. Eventually, a significant decrease in the levels of THC, haemocytes phagocytosis rate, plasma PO, antibacterial and bacteriolytic activities was detected. Therefore, these results indicate that under ammonia-N stress, the combination of CHH and GC mainly affects exocytosis of shrimp through the cGMP-PKG-CREB pathway. Simultaneously, CHH stimulates the release of biogenic amines, and then activate G protein effectors after binding to their specific receptors, to regulate exocytosis mainly via the cAMP-PKA-CREB pathway and influence phagocytosis primarily by the cAMP-PKA-NF-κB pathway. CHH can enhance ACh, and then activate G protein effectors after binding to the receptors, and finally regulate exocytosis mainly through the cAMP-PKA-CREB pathway and regulate phagocytosis by the cAMP-PKA-NF-κB pathway. CHH can also promote Toll3-NF-κB pathway, thereby affecting the expressions of immune defense factors. This study contributes to a further understanding of the NEI mechanism of crustacean in response to environmental stress.


Assuntos
Proteínas de Artrópodes/imunologia , Imunidade Inata/imunologia , Hormônios de Invertebrado/imunologia , Proteínas do Tecido Nervoso/imunologia , Penaeidae/imunologia , Estresse Fisiológico/imunologia , Amônia/toxicidade , Animais , Proteínas de Artrópodes/metabolismo , Meio Ambiente , Hormônios de Invertebrado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Penaeidae/metabolismo , Transdução de Sinais/imunologia
18.
Elife ; 102021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236312

RESUMO

Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single-cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution.


How do we find out how the brain works? One way is to use imaging techniques to visualise an animal's brain in action as it performs simple behaviours: as the animal moves, parts of its brain light up under the microscope. For laboratory animals like fruit flies, which have relatively small brains, this lets us observe their brain activity right down to the level of individual brain cells. The brain directs movements via collective activity of the body's muscles. Our ability to track the activity of individual muscles is, however, more limited than our ability to observe single brain cells: even modern imaging technology still cannot monitor the activity of all the muscle cells in an animal's body as it moves about. Yet this is precisely the information that scientists need to fully understand how the brain generates behaviour. Fruit flies perform specific behaviours at certain stages of their life cycle. When the fly pupa begins to metamorphose into an adult insect, it performs a fixed sequence of movements involving a set number of muscles, which is called the pupal ecdysis sequence. This initial movement sequence and the rest of metamorphosis both occur within the confines of the pupal case, which is a small, hardened shell surrounding the whole animal. Elliott et al. set out to determine if the fruit fly pupa's ecdysis sequence could be used as a kind of model, to describe a simple behaviour at the level of individual muscles. Imaging experiments used fly pupae that were genetically engineered to produce an activity-dependent fluorescent protein in their muscle cells. Pupal cases were treated with a chemical to make them transparent, allowing easy observation of their visually 'labelled' muscles. This yielded a near-complete record of muscle activity during metamorphosis. Initially, individual muscles became active in small groups. The groups then synchronised with each other over the different regions of the pupa's body to form distinct movements, much as syllables join to form words. This synchronisation was key to progression through metamorphosis and was co-ordinated at each step by specialised nerve cells that produce or respond to specific hormones. These results reveal how the brain might direct muscle activity to produce movement patterns. In the future, Elliott et al. hope to compare data on muscle activity with comprehensive records of brain cell activity, to shed new light on how the brain, muscles, and other factors work together to control behaviour.


Assuntos
Drosophila/fisiologia , Músculos/anatomia & histologia , Músculos/fisiologia , Pupa/fisiologia , Animais , Comportamento Animal , Encéfalo/fisiologia , Biologia Computacional , Drosophila melanogaster/fisiologia , Hormônios de Invertebrado/fisiologia , Larva/fisiologia , Muda , Neurônios Motores , Receptores de Peptídeos
19.
Gen Comp Endocrinol ; 310: 113831, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089706

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropic hormone in starfish. In this study, antibodies to Asterias rubens RGP (AruRGP) were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) to measure AruRGP. Biotin-conjugated RGP (biotin-AruRGP) that binds to peroxidase-conjugated streptavidin was synthesized chemically so that it could be specifically detected using 3, 3', 5, 5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate. Similar to AruRGP, biotin-AruRGP bound to AruRGP antibodies. In binding experiments with biotin-AruRGP using wells coated with AruRGP antibodies, a displacement curve was obtained using serial dilutions of AruRGP. Using this ELISA system, AruRGP could be measured in the range 0.01-5.0 pmol per 50 µl test solution. Furthermore, 0.22 ± 0.03 and 0.20 ± 0.04 pmol AruRGP/mg wet weight tissue were detected in the radial nerve cords and circumoral nerve-rings of A. rubens, respectively. Smaller amounts of AruRGP were detected in tube feet, pyloric stomach and cardiac stomach but AruRGP was not detected in pyloric caeca, ovaries and testes. Analysis of the specificity of the AruRGP antibodies revealed that the A- and B-chains of AruRGP, Patiria pectinifera RGP, Aphelasterias japonica RGP, and human relaxin exhibit little or no cross-reactivity in the ELISA. We conclude, therefore, that we have successfully generated an ELISA system that is highly sensitive and specific for detection of AruRGP.


Assuntos
Asterias , Ensaio de Imunoadsorção Enzimática , Hormônios de Invertebrado , Relaxina , Animais , Asterias/metabolismo , Gônadas/metabolismo , Hormônios de Invertebrado/metabolismo , Relaxina/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34091708

RESUMO

Photoperiod is a reliable cue to regulate growth and reproduction for seasonal adaptation. Although photoperiodism has been well studied in Chordata and Arthropoda, less is known about Mollusca. We examined photoperiodic effects on egg laying, body size, gonad-somatic index, oocyte size and relative amounts of caudodorsal cell hormone mRNA in individual rearing conditions in the pond snail Lymnaea stagnalis. Twenty-five weeks after hatching, the percentages of egg-laying snails under a photoperiod of 12 h light and 12 h darkness (12L:12D) were significantly smaller than those under longer days. The total numbers of eggs and egg masses under 12L:12D were significantly smaller than those under longer days. Significant differences between 16L:8D and 12L:12D were not observed in the soft body and ovotestis weight, and the gonad-somatic index. Photoperiodic effects were also not observed in oocyte diameters twenty-two weeks after hatching. Twenty-seven weeks after hatching amounts of caudodorsal cell hormone mRNA were significantly lower in the cerebral ganglia with commissure under 12L:12D than 16L:8D. L. stagnalis exhibited a clear photoperiodic response in egg laying and the amount of caudodorsal cell hormone mRNA, but not in gonadal development. Under 12L:12D suppression of caudodorsal cell hormone expression might suppress egg laying.


Assuntos
Gônadas/crescimento & desenvolvimento , Hormônios de Invertebrado/biossíntese , Lymnaea/anatomia & histologia , Lymnaea/fisiologia , Oviposição/fisiologia , Fotoperíodo , Animais , Organismos Hermafroditas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...